Heat Treatment of Pine Wood: Possible Effect of Impregnation with Silver Nanosuspension

Author:

Taghiyari Hamid R.ORCID,Bayani SiavashORCID,Militz Holger,Papadopoulos Antonios N.ORCID

Abstract

The scope of the present work was to study the effects of heat treatment (at different mild temperatures) on the physicomechanical properties of pine wood, and to find out if impregnation with nanosilver may have any potential influence on the impact of heat treatment. Impregnation of wood with a 400-ppm silver nanosuspension was carried out under an initial vacuum pressure of 0.07 MPa, followed by a pressure of 0.25 MPa for thirty minutes, before heat treatment. Heat treatment was carried out under hot air at three relatively mild temperatures, 145, 165, and 185 °C. Results showed improvement of some properties in heat-treated wood at 145 °C. This was indicative of the improving impact caused by hornification and irreversible hydrogen bonding in the course of water movements due to heat treatment; significant fluctuations in the intensities of FTIR spectra bands at 1750–1500 cm−1 were corroborating evidence of chemical alterations in hemicellulose polymer. The high mass loss at temperature 185 °C, and the extreme thermal degradation thereof, overcame the improving effects of hornification and formation of irreversible hydrogen bonds, consequently mechanical properties decreased significantly. Interaction of different elements involved made it hard to predict properties in specimens modified at 165 °C. Impregnation of specimens with nanosilver suspension resulted in significant increase of mass loss in specimens heat-treated at 185 °C, and significant fluctuations in properties of specimens heat-treated at 145 °C.

Publisher

MDPI AG

Subject

Forestry

Reference73 articles.

1. The Effect of Different Methods of Drying on the strength of Wood;Tiemann;Lumber World Rev.,1915

2. Wood Modification—Chemical, Thermal and Other Processes;Hill,2006

3. Correlations among microfibril angle, density, modulus of elasticity, modulus of rupture and shrinkage in 16-year-old Eucalyptus urophylla× E. grandis;Hein;Maderas Cienc. Tecnol.,2013

4. Innovative Wood Surface Treatments Based on Nanotechnology

5. Nanomaterials and Chemical Modifications for Enhanced Key Wood Properties: A Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3