Abstract
There is a scarcity of fresh water in many rural communities where solar stills can be used to produce drinking water at a minimal cost. These stills use solar energy, which is a sustainable form of energy, and hence this can contribute towards achievement of United Nations (UN) Sustainable Development Goals (SDG). This study aims to develop empirical models of a solar stills based on experimental data obtained at Werrington South, New South Wales, Australia. Two solar stills were used in the experiment, a conventional design (Con-Still) and a con-still modified with adding extra thermal mass inside the still (mod-still). Regression analysis was adopted to develop prediction equations using Pi (productivity in L/m2/day) as the response variable and ambient temperature (Ta), sky temperature (Ts19), global radiation (Gh), and wind velocity (W) as the predictor variables. The mean and median productivity values of the mod-still were found to be 17%, and 22% higher than that those for the con-still. The proposed mod-still can be further improved and used in rural areas to produce fresh water from sea water and other forms of contaminated water.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献