A Sequential Two-Stage Track-to-Track Association Method in Asynchronous Bearings-Only Sensor Networks for Aerial Targets Surveillance

Author:

Yu Yang,Hou Qingyu,Zhang Wei,Zhang Jinxiu

Abstract

Successful track-to-track association (TTTA) in a multisensor and multitarget scenario is predicated on a reasonable likelihood function to evaluate the similarity of asynchronous mono tracks. To deal with the lack of synchronous data and prior knowledge of the targets in practical applications, this paper investigates a global optimization method with a novel likelihood function constructed by finite asynchronous measurements with joint temporal and spatial constraints (JTSC). For a scenario with more than two independent sensors, a sequential two-stage strategy is proposed to calculate the similarity of multiple asynchronous mono tracks. For the first stage, based on the temporal features of measurements from different sensors, a pairwise fusion model to estimate the position of the target with two mono tracks is established based on the asynchronous crossing location approach. For the other stage, to evaluate the similarity of the outputs, a pairwise similarity model is constructed by searching for the optimal matching points by setting temporal and spatial constraints. Thus, the likelihood of multiple asynchronous tracks is obtained. Simulations are performed to verify that the proposed method can achieve favorable performance without data-synchronization, and also demonstrate the superiority over the methods based on hinge angle differences (HADs) in some scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3