Molecular Aggregation Strategy for Pore Generation in SiOC Ceramics Induced by the Conjugation Force of Phenyl

Author:

Yi Gang1,Yu Yuxi1

Affiliation:

1. Fujian Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China

Abstract

Porous silicon oxycarbide (SiOC) ceramics with tailorable microstructure and porosity were fabricated using phenyl-substituted cyclosiloxane (C-Ph) as a molecular-scale porogen are analyzed in this study. A gelated precursor was synthesized via the hydrosilylation of hydrogenated and vinyl-functionalized cyclosiloxanes (CSOs), followed by pyrolysis at 800–1400 °C in flowing N2 gas. Tailored morphologies, such as closed-pore and particle-packing structures, with porosities in the range 20.2–68.2% were achieved by utilizing the high boiling point of C-Ph and the molecular aggregation in the precursor gel induced by the conjugation force of phenyl. Moreover, some of the C-Ph participated in pyrolysis as a carbon source, which was confirmed by the carbon content and thermogravimetric analysis (TGA) data. This was further confirmed by the presence of graphite crystals derived from C-Ph, as determined by high-resolution transmission electron microscopy (HRTEM). In addition, the proportion of C-Ph involved in the ceramic process and its mechanism were investigated. The molecular aggregation strategy for phase separation was demonstrated to be facile and efficient, which may promote further research on porous materials. Moreover, the obtained low thermal conductivity of 27.4 mW m−1 K−1 may contribute to the development of thermal insulation materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3