Affiliation:
1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
2. Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 210009, China
3. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 210009, China
4. Swiss Federal Laboratories for Materials Science and Technology, EMPA, Überlandstrasse 129, 8600 Dübendorf, Switzerland
Abstract
With the rapid development of industry and the acceleration of urbanization, oil pollution has caused serious damage to water, and its treatment has always been a research hotspot. Compared with traditional adsorption materials, aerogel has the advantages of light weight, large adsorption capacity and high selective adsorption, features that render it ideal as a high-performance sorbent for water treatment. The objective of this research was to develop novel hydrophobic polymer-reinforced silica aerogel microspheres (RSAMs) with water glass as the precursor, aminopropyltriethoxysilane as the modifier, and styrene as the crosslinker for oil removal from water. The effects of drying method and polymerization time on the structure and oil adsorption capacity were investigated. The drying method influenced the microstructure and pore structure in a noteworthy manner, and it also significantly depended on the polymerization time. More crosslinking time led to more volume shrinkage, thus resulting in a larger apparent density, lower pore volume, narrower pore size distribution and more compact network. Notably, the hydrophobicity increased with the increase in crosslinking time. After polymerization for 24 h, the RSAMs possessed the highest water contact angle of 126°. Owing to their excellent hydrophobicity, the RSAMs via supercritical CO2 drying exhibited significant oil and organic liquid adsorption capabilities ranging from 6.3 to 18.6 g/g, higher than their state-of-the-art counterparts. Moreover, their robust mechanical properties ensured excellent reusability and recyclability, allowing for multiple adsorption–desorption cycles without significant degradation in performance. The novel sorbent preparation method is facile and inspiring, and the resulting RSAMs are exceptional in capacity, efficiency, stability and regenerability.
Funder
Natural Science Foundation of Jiangsu Province-China
Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD)-China
China Scholarship Council
Subject
Polymers and Plastics,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献