Material Extrusion of Wool Waste/Polycaprolactone with Improved Tensile Strength and Biodegradation

Author:

Haque Abu Naser Md Ahsanul1ORCID,Naebe Maryam1ORCID

Affiliation:

1. Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia

Abstract

Additive manufacturing (AM) through material extrusion (MEX) is becoming increasingly popular worldwide due to its simple, sustainable and safe technique of material preparation, with minimal waste generation. This user-friendly technique is currently extensively used in diverse industries and household applications. Recently, there has been increasing attention on polycaprolactone (PCL)-based composites in MEX due to their improved biodegradability. These composites can be printed at a lower temperature, making them more energy efficient compared to commercial filaments such as acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). Although wool is the leading protein fibre in the world and can be more compatible with PCL due to its inherent hydrophobicity, the suitability of MEX using a wool/PCL combination has not been reported previously. In the current study, waste wool/PCL composite parts were printed using the MEX technique, and rheology, thermal and tensile properties, and morphology were analysed. The impact of wool loading (10% and 20%) was investigated in relation to different filling patterns (concentric, rectilinear and gyroid). Furthermore, the impact of fibre fineness on the final material produced through MEX was investigated for the first time using two types of wool fibres with diameters of 16 µm and 24 µm. The yield strength and modulus of PCL increased with the inclusion of 10% wool, although the elongation was reduced. The crystallinity of the composites was found to be reduced with wool inclusion, though the melting point of PCL remained mostly unchanged with 10% wool inclusion, indicating better compatibility. Good miscibility and uniform structure were observed with the inclusion of 10% wool, as evidenced by rheology and morphology analysis. The impact of fibre fineness was mostly minor, though wool/PCL composites showed improved thermal stability with finer diameter of wool fibres. The printed specimens exhibited an increasing rate of biodegradation in marine water, which was correlated to the amount of wool present. Overall, the results demonstrate the practical applicability of the wool/PCL composition in MEX for the preparation of varied objects, such as containers, toys and other household and industrial items. Using wool/PCL combinations as regular plastics would provide a significant environmental advantage over the non-degradable polymers that are currently used for these purposes.

Funder

Ford Motor Company

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3