In Situ Polymerization Synthesis of Graphdiyne Nanosheets as Electrode Material and Its Application in NMR Spectroelectrochemistry

Author:

Zhang Siyue1,Yang Lin1,Zhang Xiaoping1ORCID,Chen Yuxue1,Zhang Yutong1,Sun Wei1ORCID

Affiliation:

1. Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China

Abstract

In situ NMR spectroelectrochemistry is extremely powerful in studying redox reactions in real time and identifying unstable reaction intermediates. In this paper, in situ polymerization synthesis of ultrathin graphdiyne (GDY) nanosheets was realized on the surface of copper nanoflower/copper foam (nano−Cu/Cuf)-based electrode with hexakisbenzene monomers and pyridine. Palladium (Pd) nanoparticles were further deposited onto the GDY nanosheets by the constant potential method. By using this GDY composite as electrode material, a new NMR-electrochemical cell was designed for in situ NMR spectroelectrochemistry measurement. The three-electrode electrochemical system consists of a Pd/GDY/nano−Cu/Cuf electrode as the working electrode, a platinum wire as the counter electrode, and a silver/silver chloride (Ag/AgCl) wire as a quasi-reference electrode, which can be dipped into a specially constructed sample tube and adapted for convenient operation in any commercial high-field, variable-temperature FT NMR spectrometer. The application of this NMR-electrochemical cell is illustrated by monitoring the progressive oxidation of hydroquinone to benzoquinone by controlled-potential electrolysis in aqueous solution.

Funder

the National Natural Science Foundation of China

Hainan Provincial Natural Science Foundation of High Level-talent Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3