Feasibility Study of Using Hydrophobic Geopolymer-Based as Aggregate Substitution in Asphalt Mixture

Author:

Ago Cadnel1ORCID,Li Guowei1,Wu Jiantao1,Md Yusoff Nur Izzi2ORCID

Affiliation:

1. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China

2. Department of Civil Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

Abstract

Hydrophobic aggregates have the great ability to prevent asphalt pavement roads from stripping-off of the asphalt in presence of water. In addition, they give the option to consume less asphalt and save cost. On the other hand, natural aggregates have been found to be non-renewable and rare. Geopolymer based artificial aggregates are great materials as they demonstrated to have exceptional features, such as high strength, superior durability, and greater resistance to fire exposure. In this study, a new hydrophobic geopolymer based aggregate has been produced with rice ash (RA) and fly ash as precursors as well as, Sodium Hydroxide (NaOH) and Sodium Silicate (Na2SiO3) as activators. The mechanical properties combined with the softening coefficient, surface properties of samples, contact angle and adhesion were characterized as well as microstructure X-ray diffraction (XRD) and Scanning electron microscopy (SEM) test. The results indicate that the activators Na2SiO3/NaOH at a mix ratio of 1 have a suitable effect on the pores and the compressive strength of the new artificial aggregate most particularly sodium hydroxide. Nonetheless, it has been found that coating the artificial aggregate with asphalt showed a great improvement of the hydrophobic nature of the produced artificial aggregate based geopolymer. Hence, indicates the possibility of using it as recycle aggregate pavement. From a microstructure point, the hydrophobic nature of the new alkali-activated artificial aggregate can be improved by increasing the quantity of mullite in the mix proportion design.

Funder

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3