Preparation of Superhydrophilic/Underwater Superoleophobic and Superhydrophobic Stainless Steel Meshes Used for Oil/Water Separation

Author:

Zhang Yu-Ping12,Wang Ya-Ning2,Du Hong-Li1,Qv Ling-Bo2,Chen Jun23

Affiliation:

1. College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China

2. College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China

3. College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China

Abstract

Robust membrane materials with high efficiency have attracted extensive attention in oil/water separation. In this work, carbon particles via candle combustion were firstly adsorbed on the surface of stainless steel meshes (SSMs), which formed a thin hydrophobic coating, and a rough structure was then constructed through chemical vapor deposition and high temperature calcination, with the resultant SSM surface wrapped with uniform silica coating possessing the characteristic of superoleophobicity underwater. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray powder diffraction (XRD) were used to characterize the modified SSMs. The prepared SSMs were superhydrophilic in air, and they had superoleophobicity underwater (157.4°). The separation efficiency of five oil/water mixtures was above 98.8%, and the separation flux was 46,300 L·m−2·h−1. After it was immersed in 1 mol/L NaOH, 1 mol/L HCl and 3.5 wt% NaCl for 24 h, respectively, the efficiency was still above 97.3%. Further immersion in the solution of dopamine and octadecylamine resulted in the transformation of superhydrophililc/superoleophobicity-underwater SSMs to superhydrophobic SSMs, and the resultant SSMs with reverse surface wettability was also used for the oil/water separation with good separation efficiency and separation flux.

Funder

National Nature Science Foundation of China

Major Project of Science and Technology of Xinxiang City

Scientific Innovation Team in Henan Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3