Experimental Study on Enhanced Oil Recovery of Adaptive System after Polymer Flooding

Author:

Pi Yanfu1,Fan Xinyu1,Liu Li1,Zhao Mingjia1,Jiang Linxiao1,Cheng Guoyu1

Affiliation:

1. Key Laboratory of Enhanced Oil and Gas Recovery of Ministry of Education, Northeast Petroleum University, Daqing 163319, China

Abstract

After polymer flooding in Daqing Oilfield, the heterogeneity of the reservoir is enhanced, leading to the development of the dominant percolation channels, a significant issue with inefficient circulation, a substantial amount of displacement agents, and elevated cost. In order to further improve oil recovery, an adaptive oil displacement system (ASP-PPG) was proposed by combining preformed particle gel (PPG) with an alkali-surfactant-polymer system (ASP). This comprehensive study aims to assess the effectiveness of the adaptive oil displacement system (ASP-PPG) in improving the recovery efficiency of heterogeneous reservoirs after polymer flooding. The evaluation encompasses various critical aspects, including static performance tests, flow experiments, microscopic experiments, profile control experiments, and flooding experiments conducted on a four-layer heterogeneous physical model. The experimental results show that the adaptive system has robust stability, enhanced mobility, effective plugging capability, and profile improvement capability. Notably, the system demonstrates the remarkable ability to successfully pass through the core and effectively block the large pores, resulting in an 18.4% recovery incremental after polymer flooding. This improvement is reflected in the reduced oil saturation values in the ultra-high permeability, high permeability, medium, and low permeability layers, which are 5.09%, 7.01%, 13.81%, and 15.45%, respectively. The adaptive system effectively recovered the remaining oil in the low and medium permeability layers, providing a promising approach for improving the recovery factors under challenging reservoir conditions.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3