Durability of Two Epoxy Adhesive BFRP Joints Dipped in Seawater under High Temperature Environment

Author:

Niu Ruitao1,Yang Yang2,Liu Zhen3,Ding Ziyang3,Peng Han3,Fan Yisa3ORCID

Affiliation:

1. School of Aerospace Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China

2. Institute of Mechanical Engineering, Materials and Transportation, Peter the Great Saint-Petersburg Polytechnic University, Saint-Petersburg 195251, Russia

3. School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

Abstract

Fiber-reinforced polymers (FRPs) have great potential in shipbuilding. As a new type of material, basalt-fiber-reinforced polymer (BFRP) has received increasing attention due to its good economic and environmental performance. In this paper, BFRP single-lap joints (SLJs) bonded by Araldite®2011 and Araldite®2014 were selected as sample objects, the joints, aged for 240 h, 480 h, and 720 h, were experimentally analyzed in 3.5% NaCl solution/5% NaCl solution at 80 °C. The sequential dual Fickian (SDF) model was used to fit the water absorption process of the dumbbell specimen material. By comparison, the water absorption of the material occurred mainly on the adhesive and the water absorption of Araldite®2011 was higher than that of Araldite®2014. The decrease in the Tg of the aged joint adhesive was characterized by DSC, and the TG test showed that the polymer material in the joint was degraded by the damp–heat effect. The quasi-static tensile test showed that the decrease in joint failure strength was positively correlated with the water content of the solution. The Araldite®2011 adhesive joint showed better mechanical properties and stability than the Araldite®2014 adhesive joint, while the secondary crosslinking of the bound water with the polymer chain resulted in a slight increase in the stiffness of the aged joint. From comprehensive observation of the macro-section and SEM-EDX images, it is concluded that the failure mode of the joint changes from fiber tearing to mixed failure of fiber tearing and adhesive layer cohesion, and the plasticizing effect of the epoxy resin in the adhesive and chemical corrosion of salt ions weakens the adhesive layer’s bond strength.

Funder

Technology Project of Henan Province

Henan province of university technology innovation team

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3