Affiliation:
1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
2. Nanjing Wurui Biodegradable New Material Research Institute Co., Ltd., Nanjing 211816, China
Abstract
Preparing composites from gricultural waste with biodegradable polymers is one of the strategies used to ensure the long-term sustainability of such materials. However, due to the differences in their chemical properties, biomass fillers often exhibit poor interfacial adhesion with polymer matrices. Inspired by mussel foot silk, this work focused on the surface modification of coffee grounds (CGs) using a combination of tannic acid (TA) and alkali treatment. CGs were used as a biomass filler to prepare polybutylene adipate terephthalate (PBAT)/CG composites. The modification of CGs was demonstrated by Fourier transform infrared spectroscopy (FTIR), the water contact angle, and scanning electron microscopy (SEM). The effect of CGs on the rheological, tensile, and thermal properties of the PBAT/CG composites was investigated. The results showed that the addition of CGs increased the complex viscosity, and the surface modification enhanced the matrix–filler adhesion. Compared with unmodified CG composites, the tensile strength and the elongation at break of the composite with TA-modified alkali-treated CGs increased by 47.0% and 53.6%, respectively. Although the addition of CGs slightly decreased the thermal stability of PBAT composites, this did not affect the melting processing of PBAT, which often occurs under 200 °C. This approach could provide a novel method for effectively using biomass waste, such as coffee grounds, as fillers for the preparation of polymer composites.
Funder
Science and Technology Support Plan of Suqian
Priority Academic Program Development of Jiangsu Higher Education Institutions
Nanjing Wurui Biodegradable Materials Research Institute
Subject
Polymers and Plastics,General Chemistry