Research on Hysteretic Behavior of FRP-Confined Concrete Core-Encased Rebar

Author:

Lu Jingzhou1,Mou Tong1,Wang Chen1,Huang Han1,Han Wenyu1

Affiliation:

1. School of Civil Engineering, Yantai University, Yantai 264005, China

Abstract

FRP-confined concrete core-encased rebar (FCCC-R) is a novel composite structure that has recently been proposed to effectively delay the buckling of ordinary rebar and enhance its mechanical properties by utilizing high-strength mortar or concrete and an FRP strip to confine the core. The purpose of this study was to study the hysteretic behavior of FCCC-R specimens under cyclic loading. Different cyclic loading systems were applied to the specimens and the resulting test data were analyzed and compared, in addition to revealing the mechanism of elongation and mechanical properties of the specimens under the different loading systems. Furthermore, finite-element simulation was performed for different FCCC-Rs using the ABAQUS software. The finite-element model was also used for the expansion parameter studies to analyze the effects of different influencing factors, including the different winding layers, winding angles of the GFRP strips, and the rebar-position eccentricity, on the hysteretic properties of FCCC-R. The test result indicates that FCCC-R exhibits superior hysteretic properties in terms of maximum compressive bearing capacity, maximum strain value, fracture stress, and envelope area of the hysteresis loop when compared to ordinary rebar. The hysteretic performance of FCCC-R increases as the slenderness ratio is increased from 10.9 to 24.5 and the constraint diameter is increased from 30 mm to 50 mm, respectively. Under the two cyclic loading systems, the elongation of the FCCC-R specimens is greater than that of ordinary rebar specimens with the same slenderness ratio. For different slenderness ratios, the range of maximum elongation improvement is about 10% to 25%, though there is still a large discrepancy compared to the elongation of ordinary rebar under monotonic tension. Despite the maximum compressive bearing capacity of FCCC-R is improved under cyclic loading, the internal rebars are more prone to buckling. The results of the finite-element simulation are in good agreement with the experimental results. According to the study of expansion parameters, it is found that the hysteretic properties of FCCC-R increase as the number of winding layers (one, three, and five layers) and winding angles (30°, 45°, and 60°) in the GFRP strips increase, while they decrease as the rebar-position eccentricity (0.15, 0.22, and 0.30) increases.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3