Facile Synthesis Hyper-Crosslinked PdFe Bimetallic Polymer as Highly Active Catalyst for Ullmann Coupling Reaction of Chlorobenzene

Author:

Tang Cheng12,Yang Wenwen1,Zou Zhijuan1,Liao Fang1,Zeng Chunmei1,Song Kunpeng1ORCID

Affiliation:

1. Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road, Nanchong 637009, China

2. Key Laboratory of Low-Cost Rural Environmental Treatment Technology, Sichuan University of Arts and Science, Education Department of Sichuan Province, Dazhou 635000, China

Abstract

The synthesis of efficient and sustainable heterogeneous Pd-based catalysts has been an active field of research due to their crucial role in carbon–carbon coupling reactions. In this study, we developed a facile and eco-friendly in situ assembly technique to produce a PdFe bimetallic hyper-crosslinked polymer (HCP@Pd/Fe) to use as a highly active and durable catalyst in the Ullmann reaction. The HCP@Pd/Fe catalyst exhibits a hierarchical pore structure, high specific surface area, and uniform distribution of active sites, which promote catalytic activity and stability. Under mild conditions, the HCP@Pd/Fe catalyst is capable of efficiently catalyzing the Ullmann reaction of aryl chlorides in aqueous media. The exceptional catalytic performance of HCP@Pd/Fe is attributed to its robust absorption capability, high dispersion, and strong interaction between Fe and Pd, as confirmed by various material characterizations and control experiments. Furthermore, the coated structure of a hyper-crosslinked polymer enables easy recycling and reuse of the catalyst for at least 10 cycles without any significant loss of activity.

Funder

Fundamental Research Funds of China West Normal University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3