Fabrication of Highly Conductive Porous Fe3O4@RGO/PEDOT:PSS Composite Films via Acid Post-Treatment and Their Applications as Electrochemical Supercapacitor and Thermoelectric Material

Author:

Gao Luyao123,Liu Fuwei123,Wei Qinru1,Cai Zhiwei1,Duan Jiajia1,Li Fuqun1,Li Huiying1,Lv Ruotong1,Wang Mengke1,Li Jingxian1,Wang Letian1

Affiliation:

1. College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China

2. Key Laboratory of Advanced Micro/Nano Functional Materials of Henan Province, Xinyang Normal University, Xinyang 464000, China

3. Energy-Saving Building Materials Innovative Collaboration Center of Henan Province, Xinyang Normal University, Xinyang 464000, China

Abstract

As a remarkable multifunctional material, ferroferric oxide (Fe3O4) exhibits considerable potential for applications in many fields, such as energy storage and conversion technologies. However, the poor electronic and ionic conductivities of classical Fe3O4 restricts its application. To address this challenge, Fe3O4 nanoparticles are combined with graphene oxide (GO) via a typical hydrothermal method, followed by a conductive wrapping using poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic sulfonate) (PEDOT:PSS) for the fabrication of composite films. Upon acid treatment, a highly conductive porous Fe3O4@RGO/PEDOT:PSS hybrid is successfully constructed, and each component exerts its action that effectively facilitates the electron transfer and subsequent performance improvement. Specifically, the Fe3O4@RGO/PEDOT:PSS porous film achieves a high specific capacitance of 244.7 F g−1 at a current of 1 A g−1. Furthermore, due to the facial fabrication of the highly conductive networks, the free-standing film exhibits potential advantages in flexible thermoelectric (TE) materials. Notably, such a hybrid film shows a high electric conductivity (σ) of 507.56 S cm−1, a three times greater value than the Fe3O4@RGO component, and achieves an optimized Seebeck coefficient (S) of 13.29 μV K−1 at room temperature. This work provides a novel route for the synthesis of Fe3O4@RGO/PEDOT:PSS multifunctional films that possess promising applications in energy storage and conversion.

Funder

National Natural Science Foundation of China

Nanhu Scholars Program for Young Scholars of XYNU

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3