Affiliation:
1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
2. Institute of Emergent Elastomers, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
Abstract
The development of damping and tire materials has led to a growing need to customize the dynamic viscoelasticity of polymers. In the case of polyurethane (PU), which possesses a designable molecular structure, the desired dynamic viscoelasticity can be achieved by carefully selecting flexible soft segments and employing chain extenders with diverse chemical structures. This process involves fine-tuning the molecular structure and optimizing the degree of micro-phase separation. It is worth noting that the temperature at which the loss peak occurs increases as the soft segment structure becomes more rigid. By incorporating soft segments with varying degrees of flexibility, the loss peak temperature can be adjusted within a broad range, from −50 °C to 14 °C. Furthermore, when the molecular structure of the chain extender becomes more regular, it enhances interaction between the soft and hard segments, leading to a higher degree of micro-phase separation. This phenomenon is evident from the increased percentage of hydrogen-bonding carbonyl, a lower loss peak temperature, and a higher modulus. By modifying the molecular weight of the chain extender, we can achieve precise control over the loss peak temperature, allowing us to regulate it within the range of −1 °C and 13 °C. To summarize, our research presents a novel approach for tailoring the dynamic viscoelasticity of PU materials and thus offers a new avenue for further exploration in this field.
Funder
National Key R&D Program of China
National Science Foundation for Young Scientists of China
Defense Industrial Technology Development Program
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献