The Development of Environmentally Sustainable Poly(vinyl chloride) Composite from Waste Non-Metallic Printed Circuit Board with Interfacial Agents

Author:

Moe Aung Kyaw12ORCID,Chungprempree Jirasuta1,Preechawong Jitima1ORCID,Sapsrithong Pornsri3,Nithitanakul Manit12ORCID

Affiliation:

1. The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand

2. Center of Excellence on Petrochemical and Materials Technology, Bangkok 10330, Thailand

3. Department of Mechanical Engineering Technology, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Abstract

The recycling of non-metallic printed circuit boards (NMPCB) as a filler in poly(vinyl chloride) (PVC) composite would help to encourage the use of waste NMPCB, thus, reducing some environmental concerns with regard to e-waste. The objective of this study was to comprehensively evaluate the effect of different interfacial agents, namely polypropylene grafted maleic anhydride (PP-g-MAH) and ϒ-aminopropyltriethoxy silane (ATPS) on the morphology and properties of PVC/NMPCB composites. A PVC/NMPCB composite was prepared by melt compounding with varying amounts of NMPCB ranging between 10, 20 and 30 wt.%. Fourier transform infrared spectroscopy–attenuated total reflectance (FTIR–ATR) analysis revealed the interactions between PVC and NMPCB when using both PP-g-MAH and ATPS interfacial agent. The properties and morphology of PVC/NMPCB composites were significantly dependent on the interfacial agent treated on the NMPCB surface. The phase morphology and mechanical properties of PVC/NMPCB composites (30 wt.% of NMPCB) were improved and the result also indicated that the higher compatibility of composites with ATPS as an interfacial agent led to our obtaining the maximum Young’s modulus of 484 MPa. The dynamic mechanical analysis revealed the interaction at the interface, with the Tg shifting to a lower temperature in the presence of PP-g-MAH and strong interfacial adhesion noted with the improved Tg in the presence of the ATPS interfacial agent. Further evidence of the improved interaction was observed with the increment in density in the presence of ATPS when compared with PP-g-MAH in PVC/NMPCB composite. Hence, of the two interfacial agents, ATPS showed itself to be more effective when employed as an interfacial agent for NMPCB in PVC composite for industry.

Funder

ASEAN scholarships, Chulalongkorn University

Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3