A Study on the Thermal Degradation of an Acrylamide and 2-Acrylamido-2-Methylpropanesulfonic Acid Copolymer at High Temperatures

Author:

Zhang Guicai1,Ran Yunling1,Jiang Ping1,Pei Haihua1

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

As a temperature-resistant and salt-resistant polymer, acrylamide and 2-acrylamide-2-methylpropane sulfonic acid (abbreviated as AM-AMPS) copolymer is currently widely used in drilling, water control and oil production stabilization, enhanced oil recovery and other fields, but its stability under high temperature has been less studied. The degradation process of the AM-AMPS copolymer solution was studied by measuring viscosity, the degree of hydrolysis, and weight-average molecular weight at different temperatures and aging time. During the high-temperature aging process, the viscosity of the AM-AMPS copolymer saline solution first increases and then decreases. The combined action of the hydrolysis reaction and the oxidative thermal degradation leads to the change of the viscosity of the AM-AMPS copolymer saline solution. The hydrolysis reaction of the AM-AMPS copolymer mainly affects the structural viscosity of its saline solution through intramolecular and intermolecular electrostatic interactions, while the oxidative thermal degradation mainly reduces its molecular weight by breaking the main chain of the copolymer molecules, reducing the viscosity of the AM-AMPS copolymer saline solution. The content of AM and AMPS groups in the AM-AMPS copolymer solution at various temperatures and aging time was analyzed using liquid nuclear magnetic resonance carbon spectroscopy, demonstrating that the hydrolysis reaction rate constant of AM groups was significantly higher than that of AMPS groups. The contribution values of hydrolysis reaction and oxidative thermal degradation of the AM-AMPS copolymer at different aging time to viscosity were quantitatively calculated at temperatures ranging from 104.5 °C to 140 °C. It was determined that the higher the heat treatment temperature, the smaller the contribution of hydrolysis reaction to viscosity, while the bigger the contribution of oxidative thermal degradation to the viscosity of the AM-AMPS copolymer solution.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3