The Aging Behavior and Life Prediction of CFRP Rods under a Hygrothermal Environment

Author:

Liu Xiaodong1,Su Qingyong1,Zhu Jing2,Song Xiaopeng1

Affiliation:

1. School of Energy and Built Environment, Guilin University of Aerospace Technology, Guilin 541004, China

2. College of Civil Engineering and Architecture, Harbin University of Science and Technology, Harbin 150080, China

Abstract

Carbon fiber-reinforced polymer (CFRP) composites have been widely used in civil engineering structures due to their excellent mechanical and durability properties. The harsh service environment of civil engineering leads to significant degradation of the thermal and mechanical performances of CFRP, which then reduces its service reliability, service safety, and life. Research on the durability of CFRP is urgently needed to understand the long-term performance degradation mechanism. In the present study, the hygrothermal aging behavior of CFRP rods was investigated experimentally through immersion in distilled water for 360 days. The water absorption and diffusion behavior, the evolution rules of short beam shear strength (SBSS), and dynamic thermal mechanical properties were obtained to investigate the hygrothermal resistance of CFRP rods. The research results show that the water absorption behavior conforms to Fick’s model. The ingression of water molecules leads to a significant decrease in SBSS and glass transition temperature (Tg). This is attributed to the plasticization effect of the resin matrix and interfacial debonding. Furthermore, the Arrhenius equation was used to predict the long-term life of SBSS in the actual service environment based on the time–temperature equivalence theory, obtaining a stable strength retention of SBSS of 72.78%, which was meaningful to provide a design guideline for the long-term durability of CFRP rods.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3