Preparation and Thermal Properties of Propyl Palmitate-Based Phase Change Composites with Enhanced Thermal Conductivity for Thermal Energy Storage

Author:

Yin Linzhi1,Zhao Min1ORCID,Yang Rui1ORCID

Affiliation:

1. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

Abstract

Phase change materials (PCMs), which can absorb and release large amounts of latent heat during phase change, have been extensively studied for heat storage and thermal management. However, technical bottlenecks regarding low thermal conductivity and leakage have hindered practical applications of PCMs. In this paper, a simple, economical, and scalable absorption polymerization technique is proposed to prepare the polymethyl methacrylate/propyl palmitate/expanded graphite (MPCM/EG) phase change composites by constructing the microencapsulated phase change materials (polymethyl methacrylate/propyl palmitate, MPCM) with core-shell structures in the three-dimensional (3D) EG networks, taking propyl palmitate as the PCM core, polymethyl methacrylate (PMMA) as the shell, and long-chain “worm-like” EG as the thermally conductive networks. This technique proved to be a more appropriate combinatorial pathway than direct absorption of MPCM via EG. The MPCM/EG composites with high thermal conductivity, high enthalpy, excellent thermal stability, low leakage, and good thermal cycle reliability were prepared. The results showed that the MPCM-80/EG-10 composite demonstrated a high thermal conductivity of 3.38 W/(m·K), a phase change enthalpy up to 152.0 J/g, an encapsulation ratio of 90.3%, outstanding thermal stability performance, and long-term thermal cycle reliability when the EG loading is 10% and propyl palmitate is 80%. This research offers an easy and efficient approach for designing and fabricating phase change composites with promising applications in diverse energy-saving fields, such as renewable energy collection, building energy conservation, and microelectronic devices thermal protection.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3