Simulation-Based Identification of Operating Point Range for a Novel Laser-Sintering Machine for Additive Manufacturing of Continuous Carbon-Fibre-Reinforced Polymer Parts

Author:

Baranowski Michael12,Shao Zijin1,Spintzyk Alexander1,Kößler Florian1ORCID,Fleischer Jürgen1

Affiliation:

1. Institute of Production Science, Faculty of Mechanical Engineering, Karlsruhe Institute of Technology (KIT), Kaiserstaße 12, 76131 Karlsruhe, Germany

2. Karlsruhe Research Factory, Karlsruhe Institute of Technology (KIT), Rintheimer Querallee 2, 76131 Karlsruhe, Germany

Abstract

Additive manufacturing using continuous carbon-fibre-reinforced polymer (CCFRP) presents an opportunity to create high-strength parts suitable for aerospace, engineering, and other industries. Continuous fibres reinforce the load-bearing path, enhancing the mechanical properties of these parts. However, the existing additive manufacturing processes for CCFRP parts have numerous disadvantages. Resin- and extrusion-based processes require time-consuming and costly post-processing to remove the support structures, severely restricting the design flexibility. Additionally, the production of small batches demands considerable effort. In contrast, laser sintering has emerged as a promising alternative in industry. It enables the creation of robust parts without needing support structures, offering efficiency and cost-effectiveness in producing single units or small batches. Utilising an innovative laser-sintering machine equipped with automated continuous fibre integration, this study aims to merge the benefits of laser-sintering technology with the advantages of continuous fibres. The paper provides an outline, using a finite element model in COMSOL Multiphysics, for simulating and identifying an optimised operating point range for the automated integration of continuous fibres. The results demonstrate a remarkable reduction in processing time of 233% for the fibre integration and a reduction of 56% for the width and 44% for the depth of the heat-affected zone compared to the initial setup.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference38 articles.

1. (2020, May 02). Schlüsseltechnologie Leichtbau. Available online: https://www.bmwi.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/05/kapitel-1-6-schluesseltechnologie-leichtbau.html.

2. Schürmann, H. (2007). Konstruieren mit Faser-Kunststoff-Verbunden, Springer. [2nd ed.].

3. Baumann, F., Sielaff, L., and Fleischer, J. (2017, January 14–16). Process Analysis and Development of a Module for Implementing Continuous Fibres in an Additive Manufacturing Process. Proceedings of the SAMPE Europe Symposium 2017, Stuttgart, Germany.

4. Material extrusion of continuous fiber reinforced plastics using commingled yarn;Vaneker;Procedia CIRP,2017

5. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation;Matsuzaki;Sci. Rep.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3