Affiliation:
1. Liuzhou Key Laboratory of Automobile Exhaust Control Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
2. School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
Abstract
The severity of engine emissions for the environment and human health cannot be ignored. This article optimizes the combustion and emission of gasoline-cassava bioethanol fuel blends in electronic fuel injection engines using response surface methodology to achieve the goal of reducing carbon and pollutant emissions. The experiment investigated the effects of different gasoline-cassava bioethanol mixing ratios (G100, G90E10, G80E20, and G70E30) on engine performance, including torque, brake specific fuel consumption, power, total hydrocarbons, nitrogen oxides, and carbon monoxide emissions. The results show that the gasoline-cassava bioethanol fuel blend is not as good as G100 in terms of braking power, torque, and brake specific fuel consumption, but better than G100 in terms of carbon monoxide emissions and total hydrocarbon emissions. Then, the optimization objective function was determined, and the combustion and emission characteristics were optimized using the response surface methodology method. The optimization results indicate that the response surface methodology method can determine the interaction between design variables such as brake specific fuel consumption, nitrogen oxides, and total hydrocarbon emissions and find the best solution. In this experiment, the independent variables of the best solution were 72.9 N·m torque, 30% G70E30 mixing rate, and 2000 rpm speed, corresponding to brake specific fuel consumption at 313 g/(kW·h), nitrogen oxide emissions at 2.85 × 103 ppm, and total hydrocarbon emissions at 166 ppm. The findings of this study indicate that by optimizing the gasoline-cassava bioethanol mixture ratio, lower emission levels can be achieved in electronic fuel injection engines, thereby promoting the sustainable development of renewable energy and reducing pollutant emissions.
Funder
Liuzhou Science and Technology Program: “Product and intelligent production line development for catalytic converter national”
Guangxi University of Science and Technology
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献