Microstructure and Tensile Properties of Melt-Spun Filaments of Polybutene-1 and Butene-1/Ethylene Copolymer

Author:

Li Jianrong1,Qiao Yongna1ORCID,Zhang Hao12,Zheng Yifei1,Tang Zheng1,Zeng Zhenye1,Yao Pingping1,Bao Feng1ORCID,Liu Huichao1,Yu Jiali1,Zhu Caizhen1,Xu Jian1

Affiliation:

1. Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China

2. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract

Polybutene-1 with form I crystals exhibits excellent creep resistance and environmental stress crack resistance. The filaments of polybutene-1 and its random copolymer with 4 mol% ethylene co-units were produced via extrusion melt spinning, which are expected to be in form I states and show outstanding mechanical properties. The variances in microstructure, crystallization–melting behavior, and mechanical properties between homopolymer and copolymer filaments were analyzed using SEM, SAXS/WAXD, DSC, and tensile tests. The crystallization of form II and subsequent phase transition into form I finished after the melt-spinning process in the copolymer sample while small amounts of form II crystals remained in homopolymer filaments. Surprisingly, copolymer filaments exhibited higher tensile strength and Young’s modulus than homopolymer filaments, while the homopolymer films showed better mechanical properties than copolymer films. The high degree of orientation and long fibrous crystals play a critical role in the superior properties of copolymer filaments. The results indicate that the existence of ethylene increases the chain flexibility and benefits the formation of intercrystalline links during spinning, which contributes to an enhancement of mechanical properties. The structure–property correlation of melt-spun PB-1 filaments provides a reference for the development of polymer fibers with excellent creep resistance.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

University Stability Support plan of Shenzhen

Program for Guangdong Introducing Innovative and Entrepreneurial Teams

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3