In Vitro Degradation of 3D-Printed Poly(L-lactide-Co-Glycolic Acid) Scaffolds for Tissue Engineering Applications

Author:

Ghosh Dastidar Anushree1ORCID,Clarke Susan A2ORCID,Larrañeta Eneko3ORCID,Buchanan Fraser1ORCID,Manda Krishna1ORCID

Affiliation:

1. School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast BT9 5AH, UK

2. School of Nursing and Midwifery, Queen’s University Belfast, Belfast BT9 7BL, UK

3. School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK

Abstract

The creation of scaffolds for cartilage tissue engineering has faced significant challenges in developing constructs that can provide sufficient biomechanical support and offer suitable degradation characteristics. Ideally, such tissue-engineering techniques necessitate the fabrication of scaffolds that mirror the mechanical characteristics of the articular cartilage while degrading safely without damaging the regenerating tissues. The aim of this study was to create porous, biomechanically comparable 3D-printed scaffolds made from Poly(L-lactide-co-glycolide) 85:15 and to assess their degradation at physiological conditions 37 °C in pH 7.4 phosphate-buffered saline (PBS) for up to 56 days. Furthermore, the effect of scaffold degradation on the cell viability and proliferation of human bone marrow mesenchymal stem cells (HBMSC) was evaluated in vitro. To assess the long-term degradation of the scaffolds, accelerated degradation tests were performed at an elevated temperature of 47 °C for 28 days. The results show that the fabricated scaffolds were porous with an interconnected architecture and had comparable biomechanical properties to native cartilage. The degradative changes indicated stable degradation at physiological conditions with no significant effect on the properties of the scaffold and biocompatibility of the scaffold to HBMSC. Furthermore, the accelerated degradation tests showed consistent degradation of the scaffolds even in the long term without the notable release of acidic byproducts. It is hoped that the fabrication and degradation characteristics of this scaffold will, in the future, translate into a potential medical device for cartilage tissue regeneration.

Funder

Engineering and Physical Sciences Research Council

the Wellcome Trust

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3