Advancing Quantification of Water-Extractable Arabinoxylan in Beer: A High-Throughput Approach

Author:

Steiner Julia1ORCID,Kupetz Michael1,Becker Thomas1

Affiliation:

1. Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, 85354 Freising, Germany

Abstract

Water-extractable arabinoxylan (WEAX) may cause major problems during clarification processes in a brewery owing to its ability to form gel networks. However, high WEAX contents can also enhance the nutritional quality of the final product as they play an important role in the human diet. Therefore, precise quantification of WEAX is required. Current methods are very time- and resource-consuming as well as limited in the number of samples and in some cases provide low accuracy. Thus, a reproducible high-throughput method for the quantification of WEAX optimized for beer was developed, reaching recovery rates (RRs) of almost 100%. The assay is based on Douglas’s colorimetric method. Hydrolysis was conducted using glacial acetic acid to induce the formation of red color complexes resulting from the interaction between pentose degradation products and phloroglucinol. The method was successfully transferred to a multi-mode microplate reader to minimize the loss of color intensity over time and to obtain a high throughput. By using 96-well plates, up to 40% of the previous analysis time could be saved, and a larger number of samples could be analyzed in one batch. The collected data determined xylose as an optimal calibration standard due to high accuracy and reproducibility. The respective AX control standards showed RR within the range of 95–105% without exception. To validate and show the ruggedness of the modified method, WEAX concentration in seven commercial German beers (e.g., lager, pilsner, wheat beer, non-alcoholic beer) was quantified. Interfering hexose sugars that lead to measurement errors when analyzing samples with high amounts of fermentable sugars (e.g., non-alcoholic beer produced by limited fermentation) were eliminated by Saccharomyces diastaticus fermentation. Further investigations were carried out by means of LC-MS in order to obtain additional information about the reddish product in the hydrolyzed samples. In this context, C16H12O6 could be identified as one of numerous condensation products, contributing to the coloring. The collected data showed the impact of diverse factors on the measured AX concentration and helped optimize the experimental procedure for a high sample throughput with precise and highly reproducible results. The proposed quantification method should be primarily used in completely fermented finished beer to emphasize the time aspect. Wort samples and non-alcoholic beer produced by limited fermentation can be also analyzed, but only after fermentation with S. diastaticus.

Funder

German Federal Ministry of Economic Affairs and Energy

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3