Ballistic Behavior of Epoxy Composites Reinforced with Amazon Titica Vine Fibers (Heteropsis flexuosa) in Multilayered Armor System and as Stand-Alone Target

Author:

da Cunha Juliana dos Santos Carneiro1ORCID,Nascimento Lucio Fabio Cassiano1,Costa Ulisses Oliveira1ORCID,Bezerra Wendell Bruno Almeida1ORCID,Oliveira Michelle Souza1,Marques Maria de Fátima Vieira2ORCID,Soares Ana Paula Senra3,Monteiro Sergio Neves1ORCID

Affiliation:

1. Department of Materials Science, Military Institute of Engineering—IME, Praça General Tibúrcio, 80, Urca, Rio de Janeiro 22290-270, RJ, Brazil

2. Institute of Macromolecules Professor Eloisa Mano, Federal University of Rio de Janeiro, Horácio Macedo Av., 2.030, Bloco J, University City, Rio de Janeiro 21941-598, RJ, Brazil

3. Department of Organic Processes, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, RJ, Brazil

Abstract

Seeking to improve personal armor equipment by providing mobility and resistance to penetration, this research aimed to explore the potential of sustainable materials in order to assess their ability in ballistic applications. Titica vine fibers (TVFs) extracted from aerial roots of Heteropsis flexuosa from the Amazon region were incorporated at 10, 20, 30, and 40 vol% into an epoxy matrix for applications in ballistic multilayered armor systems (MASs) and stand-alone tests for personal protection against high-velocity 7.62 mm ammunition. The back-face signature (BFS) depth measured for composites with 20 and 40 vol% TVFs used as an intermediate layer in MASs was 25.6 and 32.5 mm, respectively, and below the maximum limit of 44 mm set by the international standard. Fracture mechanisms found by scanning electron microscopy (SEM) attested the relevance of increasing the fiber content for applications in MASs. The results of stand-alone tests showed that the control (0 vol%) and samples with 20 vol% TVFs absorbed the highest impact energy (Eabs) (212–176 J), and consequently displayed limit velocity (VL) values (213–194 m/s), when compared with 40 vol% fiber composites. However, the macroscopic evaluation found that, referring to the control samples, the plain epoxy shattered completely. In addition, for 10 and 20 vol% TVFs, the composites were fragmented or exhibited delamination fractures, which compromised their physical integrity. On the other hand, composites with 30 and 40 vol% TVFs, whose Eabs and VL varied between 166–130 J and 189–167 m/s, respectively, showed the best physical stability. The SEM images indicated that for composites with 10 and 20 vol% TVFs, the fracture mode was predominantly brittle due to the greater participation of the epoxy resin and the discrete action of the fibers, while for composites with 30 and 40 vol% TVFs, there was activation of more complex mechanisms such as pullout, shearing, and fiber rupture. These results indicate that the TVF composite has great potential for use in bulletproof vests.

Funder

Fundação de Amparo à Pesquisa do Estado do Amazonas

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3