Influence of a Multiple Epoxy Chain Extender on the Rheological Behavior, Crystallization, and Mechanical Properties of Polyglycolic Acid

Author:

Gao Jianfeng1,Wang Kai1,Xu Nai1,Li Luyao1,Ma Zhao1,Zhang Yipeng1,Xiang Kun1,Pang Sujuan2,Pan Lisha3,Li Tan4

Affiliation:

1. School of Materials Science and Engineering, Hainan University, Haikou 570228, China

2. School of Science, Hainan University, Haikou 570228, China

3. School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China

4. Shiner National and Local Joint Engineering and Research Center, Shiner Industrial Co., Ltd., Haikou 570228, China

Abstract

This study investigated the impact of a multiple epoxy chain extender (ADR) on the rheological behavior, crystallization, and mechanical properties of polyglycolic acid (PGA). Tests of the torque and melt mass flow rate and dynamic rheological analysis were conducted to study the rheological behavior of PGA modified with ADR. The rheological results of the modified PGA showed a significantly increased viscosity and storage modulus with an increase in the ADR amount, which could be attributed to the chain extension/branching reactions between PGA and ADR. It was proved that ADR could be used as an efficient chain extender for tailoring the rheological performance of PGA. The Han plot of the modified PGA showed a transition of viscous behavior to elastic behavior, while the ADR content was increased from 0 to 0.9 phr. The formation of long-chain branches (LCBs) was confirmed via the Cole–Cole plot and weighted relaxation spectrum, wherein the LCBs substantially changed the rheological behavior of the modified PGA. The vGP plots predicted a star-type topological structure for the LCBs. The results of non-isothermal crystallization kinetics suggested that the crystallization of the modified PGA was predominantly homogeneous nucleation and three-dimensional growth. The crystallinity decreased slightly with the increase in the ADR amount. Compared to neat PGA, the modified PGA samples exhibited better tensile and flexural performances.

Funder

Finance Science and Technology Project of Hainan Province of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3