Optimization of Thermal Conductivity and Tensile Properties of High-Density Polyethylene by Addition of Expanded Graphite and Boron Nitride

Author:

Travaš Lovro1,Rujnić Havstad Maja1ORCID,Pilipović Ana1ORCID

Affiliation:

1. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lucica 5, 10000 Zagreb, Croatia

Abstract

Due to its mechanical, rheological, and chemical properties, high-density polyethylene (HDPE) is commonly used as a material for producing the pipes for transport of various media. Low thermal conductivity (0.4 W/mK) narrows down the usage of HDPE in the heat exchanger systems. The main goal of the work is to reduce the vertical depth of the HDPE pipe buried in the borehole by increasing the thermal conductivity of the material. This property can be improved by adding certain additives to the pure HDPE matrix. Composites made of HDPE with metallic and non-metallic additives show increased thermal conductivity several times compared to the thermal conductivity of pure HDPE. Those additives affect the mechanical properties too, by enhancing or degrading them. In this research, the thermal conductivity and tensile properties of composite made of HDPE matrix and two types of additives, expanded graphite (EG) and boron nitride (BN), were tested. Micro-sized particles of EG and two different sizes of BN particles, micro and nano, were used to produce composite. The objective behind utilizing composite materials featuring dual additives is twofold: firstly, to enhance thermal properties, and secondly, to improve mechanical properties when compared with the pure HDPE. As anticipated, the thermal conductivity of the composites exhibited an eightfold rise in comparison to the pure HDPE. The tensile modulus experienced augmentation across all variations of additive ratios within the composites, albeit with a marginal reduction in tensile strength. This implies that the composite retains a value similar to pure HDPE in terms of tensile strength. Apart from the enhancement observed in all the aforementioned properties, the most significant downside of these composites pertains to their strain at yield, which experienced a reduction, declining from the initial 8.5% found in pure HDPE to a range spanning from 6.6% to 1.8%, dependent upon the specific additive ratios and the size of the BN particles.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3