Exploration of the Fire-Retardant Potential of Microencapsulated Ammonium Polyphosphate in Epoxy Vitrimer Containing Dynamic Disulfide Bonds

Author:

Shao Wenlong1,Li Tongbing2,Xiao Fei1ORCID,Luo Fubin3,Qiu Yong4,Liu Yanyan1,Yuan Bihe1,Li Kaiyuan1

Affiliation:

1. School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China

2. Guangdong Advanced Thermoplastic Polymer Technology Co., Ltd., Dongguan 523125, China

3. Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, China

4. China Light Industry Engineering Technology Research Center of Advanced Flame Retardants, Beijing Technology and Business University, Beijing 100048, China

Abstract

Epoxy vitrimers appear as a promising alternative to common epoxy thermoset composites. Nevertheless, the possibilities of applying these materials are limited due to their high flammability which may cause high fire risks. To date, the flame-retardant epoxy vitrimer systems reported in the literature almost all rely on intrinsic flame retardancy to achieve high fire safety; however, the complex and expensive synthesis process hinders their large-scale application. In this work, disulfide-based epoxy vitrimer (EPV) was fabricated with 4, 4′-dithiodianiline as the curing agent, and microencapsulated ammonium polyphosphate (MFAPP) was employed as a potential additive flame retardant to improve their fire retardancy. As a comparative study, common epoxy (EP) composites were also prepared using 4,4′-diaminodiphenylmethane as the curing agent. The results showed that the introduction of dynamic disulfide bonds led to a reduction in the initial thermal decomposition temperature of EPV by around 70 °C compared to EP. Moreover, the addition of 7.5 wt.% of MFAPP endowed EP with excellent fire performance: the LOI value was as high as 29.9% and the V-0 rating was achieved in the UL-94 test (3.2 mm). However, under the same loading, although EPV/MFAPP7.5% showed obvious anti-dripping performance, it did not reach any rating in the UL-94 test. The flame-retardant mechanisms in the condensed phase were evaluated using SEM-EDS, XPS, and Raman spectroscopy. The results showed that the residue of EPV/MFAPP7.5% presented numerous holes during burning, which failed to form a continuous and dense char layer as a physical barrier resulting in relatively poor flame retardancy compared to EP/MFAPP7.5%.

Funder

Open Project Program of China Light Industry Engineering Technology Research Center of Advanced Flame Retardants, Beijing Technology and Business University, China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3