Moisture Sorption and Degradation of Polymer Filaments Used in 3D Printing

Author:

Aniskevich Andrey1ORCID,Bulderberga Olga1ORCID,Stankevics Leons1ORCID

Affiliation:

1. Institute for Mechanics of Materials, The University of Latvia, Jelgavas Str. 3, LV-1004 Riga, Latvia

Abstract

Experimental research of the moisture sorption process of 12 typical filaments used for FFF was performed in atmospheres with a relative humidity from 16 to 97% at room temperature. Materials with high moisture sorption capacity were revealed. Fick’s diffusion model was applied to all tested materials, and a set of sorption parameters was found. The solution of Fick’s second equation for the two-dimensional cylinder was obtained in series form. Moisture sorption isotherms were obtained and classified. Moisture diffusivity dependence on relative humidity was evaluated. The diffusion coefficient was independent of the relative humidity of the atmosphere for six materials. It essentially decreased for four materials and grew for the other two. Swelling strain changed linearly with the moisture content of the materials and reached up to 0.5% for some of them. The degree of degradation of the elastic modulus and the strength of the filaments due to moisture absorption were estimated. All tested materials were classified as having a low (changes ca. 2–4% or less), moderate (5–9%), or high sensitivity to water (more than 10%) by their reduction in mechanical properties. This reduction in stiffness and strength with absorbed moisture should be considered for responsible applications.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3