Effects of Different Polypropylene (PP)-Backbones in Aluminium Feedstock for Fused Filament Fabrication (FFF)

Author:

Momeni Vahid1,Shahroodi Zahra1ORCID,Gonzalez-Gutierrez Joamin12ORCID,Hentschel Lukas1ORCID,Duretek Ivica1,Schuschnigg Stephan1ORCID,Kukla Christian3ORCID,Holzer Clemens1ORCID

Affiliation:

1. Polymer Processing, Montanuniversitaet Leoben, 8700 Leoben, Austria

2. Functional Polymers Research Unit, Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), L-4940 Hautcharage, Luxembourg

3. Industrial Liaison Department, Montanuniversitaet Leoben, 8700 Leoben, Austria

Abstract

The current study presents the effect of the backbone as an important binder component on the mechanical, rheological, and thermal properties of Aluminium (Al) alloy feedstocks. A thermoplastic elastomer (TPE) main binder component was blended with either polypropylene (PP), grafted-maleic anhydride-PP (PPMA), or grafted-maleic anhydride-PPwax (PPMAwax) plus PP, as the backbone. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) tests were performed to investigate the thermal properties of binder systems and feedstocks. Fourier-transform infrared (FTIR) spectroscopy was used to study the chemical interaction between the binder and the Al alloy. After making feedstock filaments, tensile tests, scanning electron microscopy (SEM), and fused filament fabrication (FFF) printing were done. The results showed that although the PP printability was acceptable, the best mechanical properties and printed quality can be achieved by PPMA. TGA test showed that all binder systems in the feedstocks could be removed completely around 500 °C. From FTIR, the possibility of chemical reactions between Al alloy particles and maleic anhydride groups on the grafted PP backbone could explain the better dispersion of the mixture and higher mechanical properties. Tensile strength in PP samples was 3.4 MPa which was improved 1.8 times using PPMA as the backbone.

Funder

Austrian Research Promotion Agency

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3