Acoustofluidics-Assisted Coating of Microparticles

Author:

Yeh Ming-Lin1,Chang Geng-Ming1,Juang Yi-Je123ORCID

Affiliation:

1. Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan

2. Core Facility Center, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan

3. Research Center for Energy Technology and Strategy, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan

Abstract

Microparticles have been applied in many areas, ranging from drug delivery, diagnostics, cosmetics, personal care, and the food industry to chemical and catalytic reactions, sensing, and environmental remediation. Coating further provides additional functionality to the microparticles, such as controlled release, surface modification, bio-fouling resistance, stability, protection, etc. In this study, the conformal coating of microparticles with a positively charged polyelectrolyte (polyallylamine hydrochloride, PAH) by utilizing an acoustofluidic microchip was proposed and demonstrated. The multiple laminar streams, including the PAH solution, were formed inside the microchannel, and, under the traveling surface acoustic wave, the microparticles traversed through the streams, where they were coated with PAH. The results showed that the coating of microparticles can be achieved in a rapid fashion via a microfluidic approach compared to that obtained by the batch method. Moreover, the zeta potentials of the microparticles coated via the microfluidic approach were more uniform. For the unfunctionalized microparticles, the charge reversal occurred after coating, and the zeta potential increased as the width of the microchannel or the concentration of the PAH solution increased. As for the carboxylate-conjugated microparticles, the charge reversal again occurred after coating; however, the magnitudes of the zeta potentials were similar when using the microchannels with different widths or different concentrations of PAH solution.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3