The Influence of Physical Properties on the Membrane Morphology Formation during the Nonisothermal Thermally Induced Phase Separation Process

Author:

Ranjbarrad Samira1,Chan Philip K.1

Affiliation:

1. Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada

Abstract

The physical properties of a polymer solution that are composition- and/or temperature-dependent are among the most influential parameters to impact the dynamics and thermodynamics of the phase separation process and, as a result, the morphology formation. In this study, the impact of composition- and temperature-dependent density, heat capacity, and heat conductivity on the membrane structure formation during the thermally induced phase separation process of a high-viscosity polymer solution was investigated via coupling the Cahn–Hilliard equation for phase separation with the Fourier heat transfer equation. The variations of each physical property were also investigated in terms of different boundary conditions and initial solvent volume fractions. It was determined that the physical properties of the polymer solution have a noteworthy impact on the membrane morphology in terms of shorter phase separation time and droplet size. In addition, the influence of enthalpy of demixing in this case is critical because each physical property showed a nonhomogeneous pattern owing to the heat generation during phase separation, which in turn influenced the membrane morphology. Accordingly, it was determined that investigating spinodal decomposition without including heat transfer and the impact of physical properties on the morphology formation would lead to an inadequate understanding of the process, specifically in high-viscosity polymer solutions.

Funder

Natural Sciences and Engineering Research Council of Canada

Toronto Metropolitan University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3