Phase-Separated Structure of NBR/PVC Blends with Different Acrylonitrile Contents Investigated Using STEM–EDS Mapping Analysis

Author:

Komori Yuka12ORCID,Taniguchi Aoi2,Shibata Haruhisa1,Goto Shinya1,Saito Hiromu2ORCID

Affiliation:

1. Materials Engineering R & D Division, DENSO CORPORATION, Kariya-shi 448-8661, Aichi, Japan

2. Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei-shi 184-8588, Tokyo, Japan

Abstract

We investigated the phase-separated structure of nitrile butadiene rubber (NBR)/polyvinyl chloride (PVC) blends with different acrylonitrile (AN) contents in the NBR, using dynamic mechanical analysis measurements and scanning-transmission-electron-microscopy (STEM)–energy-dispersive-X-ray-spectroscopy (EDS) elemental analysis. Two separate sharp tan δ peaks were observed in the blend at the lower AN content of 18.0%, whereas a broad peak was observed in the blends with the higher AN contents of 29.0 and 33.5%, due to the increase in miscibility, as expected from the decrease in the solubility parameter difference with the increasing AN content. The STEM–EDS elemental analysis for the concentration distribution showed that the NBR was mixed in the large PVC domains with a diameter of several micrometers, and the excluded PVC existed around the interface of the domain–matrix phases in the blend with the lower AN content, whereas small domains with a diameter of several tens of nanometers were dispersed in the blend with the higher AN content. The concentration difference in PVC between the PVC domain and the NBR matrix became smaller with increasing miscibility as the AN content increased although the blends contained the same PVC content of 40 wt%.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3