Affiliation:
1. Departamento de Ingenierías Química, Electrónica y Biomédica, Universidad de Guanajuato, Lomas del Bosque 103, Col. Lomas del Campestre, León 37150, Guanajuato, Mexico
2. Departamento de Ingeniería Química, Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, Guanajuato 36000, Guanajuato, Mexico
Abstract
The meat industry generates a large amount of waste that can be used to create useful products such as bio-implants, which are usually expensive. In this report, we present an economic analysis of a continuous process for large-scale chemically cross-linked collagen scaffold (CCLCS) production in a Mexican context. For this purpose, three production capacities were simulated using SuperPro Designer® v 12.0: 5, 15, and 25 × 103 bovine pericardium units (BPU) per month as process feedstock. Data indicated that these capacities produced 2.5, 7.5, and 12.5 kg of biomesh per batch (per day), respectively. In addition, Net Unit Production Costs (NUPC) of 784.57, 458.94, and 388.26 $USD.kg−1 were obtained, correspondingly, with selling prices of 0.16 ± 0.078 USD.cm−2, 0.086 ± 0.043 USD.cm−2, and 0.069 ± 0.035 USD.cm−2, in the same order. We found that these selling prices were significantly lower than those in the current market in Mexico. Finally, distribution of costs associated with the process followed the order: raw materials > facility-dependent > labor > royalties > quality analysis/quality control (QA/QC) > utilities. The present study showed the feasibility of producing low-cost and highly profitable CCLCS with a relatively small investment. As a result, the circular bioeconomy may be stimulated.
Funder
Dirección de Apoyo a la Investigación y al Posgrado de la Universidad de Guanajuato
Subject
Polymers and Plastics,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献