Facile Synthesis of Nitrogen-Rich Porous Carbon/NiMn Hybrids Using Efficient Water-Splitting Reaction

Author:

Periyasamy Thirukumaran1,Asrafali Shakila Parveen2,Kim Seong-Cheol2,Lee Jaewoong1

Affiliation:

1. Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

2. School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

Proper design of multifunctional electrocatalyst that are abundantly available on earth, cost-effective and possess excellent activity and electrochemical stability towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are required for effective hydrogen generation from water-splitting reaction. In this context, the work herein reports the fabrication of nitrogen-rich porous carbon (NRPC) along with the inclusion of non-noble metal-based catalyst, adopting a simple and scalable methodology. NRPC containing nitrogen and oxygen atoms were synthesized from polybenzoxazine (Pbz) source, and non-noble metal(s) are inserted into the porous carbon surface using hydrothermal process. The structure formation and electrocatalytic activity of neat NRPC and monometallic and bimetallic inclusions (NRPC/Mn, NRPC/Ni and NRPC/NiMn) were analyzed using XRD, Raman, XPS, BET, SEM, TEM and electrochemical measurements. The formation of hierarchical 3D flower-like morphology for NRPC/NiMn was observed in SEM and TEM analyses. Especially, NRPC/NiMn proves to be an efficient electrocatalyst providing an overpotential of 370 mV towards OER and an overpotential of 136 mV towards HER. Moreover, it also shows a lowest Tafel slope of 64 mV dec−1 and exhibits excellent electrochemical stability up to 20 h. The synergistic effect produced by NRPC and bimetallic compounds increases the number of active sites at the electrode/electrolyte interface and thus speeds up the OER process.

Funder

Korea Government

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3