Numerical and Experimental Analysis of the Mode I Interlaminar Fracture Toughness in Multidirectional 3D-Printed Thermoplastic Composites Reinforced with Continuous Carbon Fiber

Author:

Santos Jonnathan D.12ORCID,Guerrero José M.2ORCID,Blanco Norbert2ORCID,Fajardo Jorge I.1ORCID,Paltán César A.1ORCID

Affiliation:

1. Grupo de Investigación en Nuevos Materiales y Procesos de Transformación (GIMAT), Universidad Politécnica Salesiana, Calle Vieja 12-30 y Elia Liut, Cuenca 010105, Ecuador

2. Analysis and Advanced Materials for Structural Design (AMADE), Department of Mechanical Engineering and Industrial Construction, Universitat de Girona, Avda. M. Aurèlia Capmany 61, 17003 Girona, Spain

Abstract

It is well known that the use of continuous reinforcing fibers can largely improve the typical low in-plane mechanical properties of 3D-printed parts. However, there is very limited research on the characterization of the interlaminar fracture toughness of 3D-printed composites. In this study, we investigated the feasibility of determining the mode I interlaminar fracture toughness of 3D-printed cFRP composites with multidirectional interfaces. First, elastic calculations and different FE simulations of Double Cantilever Beam (DCB) specimens (using cohesive elements for the delamination, in addition to an intralaminar ply failure criterion) were carried out to choose the best interface orientations and laminate configurations. The objective was to ensure a smooth and stable propagation of the interlaminar crack, while preventing asymmetrical delamination growth and plane migration, also known as crack jumping. Then, the best three specimen configurations were manufactured and tested experimentally to validate the simulation methodology. The experimental results confirmed that, with the appropriate stacking sequence for the specimen arms, it is possible to characterize the interlaminar fracture toughness in multidirectional 3D-printed composites under mode I. The experimental results also show that both initiation and propagation values of the mode I fracture toughness depend on the interface angles, although a clear tendency could not be established.

Funder

the Spanish Ministry of Science, Innovation, and Universities

the Spanish ‘Ministerio de Universidades’

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference64 articles.

1. Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications;Liu;Compos. Commun.,2021

2. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities;Li;J. Mater. Sci. Technol.,2022

3. (2020, February 25). Markforged. Available online: https://markforged.com/composites/.

4. An investigation into 3D printing of fibre reinforced thermoplastic composites;Blok;Addit. Manuf.,2018

5. Mechanical properties for long fibre reinforced fused deposition manufactured composites;Compos. Part B Eng.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3