Rapid Transformation in Wetting Properties of PTFE Membrane Using Plasma Treatment

Author:

Asrafali Shakila Parveen1,Periyasamy Thirukumaran2ORCID,Kim Seong-Cheol1

Affiliation:

1. School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

2. Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

In this paper, we describe the surface modification of polytetrafluoroethylene (PTFE) through the plasma treatment process. Several parameters including different active gases, RF power, distance between the plasma source and sample, and plasma duration were optimized to reduce the hydrophobic nature of PTFE. Three different active gases were used (i.e., N2, O2, and (Ar+H2)); N2 was effective to reduce the hydrophobicity of PTFE within a shorter plasma duration of 2 min. Several surface characterizations including ATR-FTIR, water contact angle, FE-SEM, and XPS were utilized to verify the neat and modified PTFE surface after plasma treatment. The plasma treatment using N2 as an active gas improved the wettability of the PTFE membrane, showing a water contact angle of 109.5° when compared with the neat PTFE (141.9°). The SEM images of plasma-treated PTFE showed greater modifications on the surface indicating non-uniform fiber alignment and torn fibers at several places. The obtained results confirm the fact that plasma treatment is an effective way to modify the PTFE surface without altering its bulk property.

Funder

Basic Science Research Program through the National Research Foundation of Korea

Technology development Program

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3