Strength and Deformation Characteristics of Fiber and Cement-Modified Waste Slurry

Author:

Ye Jiahao12,Jiang Ping12ORCID,Chen Lejie12,Zhou Xuhui12,Rao Fei12,Tang Xinyi12

Affiliation:

1. School of Civil Engineering, Shaoxing University, Shaoxing 312000, China

2. Shaoxing Key Laboratory of Interaction between Soft Soil Foundation and Building Structure, Shaoxing 312000, China

Abstract

Using fiber and cement to modify waste slurry and apply it to roads is an effective way to recycle waste slurry. A new type of road material, fiber–cement-modified waste slurry (FRCS), was prepared in this study. The static and dynamic characteristics of the cement soil were studied using an unconfined compressive strength test and dynamic triaxial test. The results show that the optimum fiber content of FRCS is 0.75%. In the unconfined compressive strength test, under this fiber content, the unconfined compressive strength (UCS) of the FRCS is the largest, and the elastic modulus and modulus strength ratio are both the smallest, indicating that the tensile properties of the cement slurry have been enhanced. In the dynamic triaxial test, the hysteretic curve of the FRCS tends to be stable with the increase in the number of cycles, the dynamic elastic modulus of the FRCS decreases first and then increases with the increase in the dosage, while the damping ratio becomes stable after a rapid decline, and the fiber incorporation increases the cumulative strain of the soil–cement under low-stress cycles, indicating that the ductility of the FRCS is improved. In addition, a cumulative strain prediction model of the FRCS is established in this paper, which can provide a reference for the resource application of waste slurry in road engineering.

Funder

National Natural Science Foundation of China

Zhejiang Province Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3