A Hyperbranched Polyol Process for Designing and Manufacturing Nontoxic Cobalt Nanocomposite

Author:

Burmatova Anastasia1ORCID,Khannanov Artur1ORCID,Gerasimov Alexander1ORCID,Ignateva Klara1ORCID,Khaldeeva Elena12,Gorovaia Arina1,Kiiamov Airat3ORCID,Evtugyn Vladimir1,Kutyreva Marianna1ORCID

Affiliation:

1. M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia

2. Kazan Research Institute of Epidemiology and Microbiology, 67 Bolshaya Krasnaya Str., 420015 Kazan, Russia

3. Quantum Simulators Lab, Institute of Physics, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia

Abstract

A method for the design and synthesis of a metallopolymer composite (CoNP) based on cobalt nanoparticles using the hyperbranched polyol process was developed. It was shown that hyperbranched polyester polyols in a melted state can be both a reducing agent and a stabilizer of metal nanoparticles at the same time. The mechanism of oxidation of hyperbranched polyol was studied using diffuse reflectance IR spectroscopy. The process of oxidation of OH groups in G4-OH started from 90 °C and finished with the oxidation of aldehyde groups. The composition and properties of nanomaterials were determined with FT-IR and UV-Vis spectroscopy, Nanoparticle Tracking Analysis (NTA), thermogravimetric analysis (TG), powder X-ray diffraction (XRD), NMR relaxation, and in vitro biological tests. The cobalt-containing nanocomposite (CoNP) had a high colloidal stability and contained spheroid polymer aggregates with a diameter of 35–50 nm with immobilized cobalt nanoparticles of 5–7 nm. The values of R2 and R1 according to the NMR relaxation method for CoNPs were 6.77 mM·ms−1 × 10−5 and 4.14 mM·ms−1 × 10−5 for, respectively. The ratio R2/R1 = 0.61 defines the cobalt-containing nanocomposite as a T1 contrast agent. The synthesized CoNPs were nonhemotoxic (HC50 > 8 g/mL) multifunctional reagents and exhibited the properties of synthetic modulators of the enzymatic activity of chymosin aspartic proteinase and exhibited antimycotic activity against Aspergillus fumigatus. The results of the study show the unique prospects of the developed two-component method of the hyperbranched polyol process for the creation of colloidal multifunctional metal–polymer nanocomposites for theranostics.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3