On the Analysis of Cryogels and Xerogels Using Cellulose Nanofibers and Graphene Oxide

Author:

Moggio Bianca Cristina1ORCID,Bergamasco Rosangela1ORCID,Andrade Cid Marcos Gonçalves1ORCID,Aylon Linnyer Beatrys Ruiz2ORCID

Affiliation:

1. Department of Chemical Engineering, State University of Maringá, Maringá 87020-900, Brazil

2. Department of Informatics, State University of Maringá, Maringá 87020-900, Brazil

Abstract

Aerogels are highly porous and ultralight three-dimensional materials with great potential for various applications. To obtain highly porous and structurally stable aerogels, a carefully designed synthesis process is required. These materials offer flexibility in manipulating their properties, allowing the incorporation of modifying agents according to specific needs. In this study, compounds were synthesized using graphene oxide (GO) and nanocellulose fibers (NFC) through the hydrothermal reduction methodology. Two drying techniques were employed: lyophilization and oven evaporation, resulting in materials called cryogel and xerogel, respectively. Various parameters that can interfere with the properties of these nanomaterials were evaluated. The results indicated that the cryogel dried by lyophilization provided the best applicability due to its structural flexibility after compressions, whereas the xerogel obtained through the oven evaporation process resulted in a compound with high rigidity and disintegration. Structural characterizations demonstrated the successful development of the precursors and promising characteristics in the synthesized nanomaterials. With its flexibility, approximately 98% porosity, low shrinkage rate, light weight, and electrical conductivity, the developed cryogel showed high potential in various applications, such as pressure sensors, electromagnetic shielding, and other research and development fields.

Funder

Manna Ecosystem

Araucária Foundation for Scientific and Technological Development of the State of Paraná

National Council for Scientific and Technological Development (CNPq)—Brazil

Coordination for the Improvement of Higher Education Personnel—Brazil

Softex Campinas Center

Complex of Support Centers for Research

Multiuser Laboratory of UTFPR Londrina

Apucarana Campuses

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3