Single-Bubble Rising in Shear-Thinning and Elastoviscoplastic Fluids Using a Geometric Volume of Fluid Algorithm

Author:

Fakhari Ahmad1ORCID,Fernandes Célio23ORCID

Affiliation:

1. Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Rd, Dallas, TX 75390, USA

2. Transport Phenomena Research Center (CEFT), Faculty of Engineering at University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

3. Center of Mathematics (CMAT), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal

Abstract

The motion of air bubbles within a liquid plays a crucial role in various aspects including heat transfer and material quality. In the context of non-Newtonian fluids, such as elastoviscoplastic fluids, the presence of air bubbles significantly influences the viscosity of the liquid. This study presents the development of an interface-capturing method for multiphase viscoelastic fluid flow simulations. The proposed algorithm utilizes a geometric volume of fluid (isoAdvector) approach and incorporates a reconstructed distance function (RDF) to determine interface curvature instead of relying on volume fraction gradients. Additionally, a piecewise linear interface construction (PLIC) scheme is employed in conjunction with the RDF-based interface reconstruction for improved accuracy and robustness. The validation of the multiphase viscoelastic PLIC-RDF isoAdvector (MVP-RIA) algorithm involved simulations of the buoyancy-driven rise of a bubble in fluids with varying degrees of rheological complexity. First, the newly developed algorithm was applied to investigate the buoyancy-driven rise of a bubble in a Newtonian fluid on an unbounded domain. The results show excellent agreement with experimental and theoretical findings, capturing the bubble shape and velocity accurately. Next, the algorithm was extended to simulate the buoyancy-driven rise of a bubble in a viscoelastic shear-thinning fluid described by the Giesekus constitutive model. As the influence of normal stress surpasses surface tension, the bubble shape undergoes a transition to a prolate or teardrop shape, often exhibiting a cusp at the bubble tail. This is in contrast to the spherical, ellipsoidal, or spherical-cap shapes observed in the first case study with a bubble in a Newtonian fluid. Lastly, the algorithm was employed to study the buoyancy-driven rise of a bubble in an unbounded elastoviscoplastic medium, modeled using the Saramito–Herschel–Bulkley constitutive equation. It was observed that in very small air bubbles within the elastoviscoplastic fluid, the dominance of elasticity and capillary forces restricts the degree of bubble deformation. As the bubble volume increases, lateral stretching becomes prominent, resulting in the emergence of two tails. Ultimately, a highly elongated bubble shape with sharper tails is observed. The results show that by applying the newly developed MVP-RIA algorithm, with a tangible coarser grid compared to the algebraic VOF method, an accurate solution is achieved. This will open doors to plenty of applications such as bubble columns in reactors, oil and gas mixtures, 3D printing, polymer processing, etc.

Funder

FCT (Fundação para a Ciência e a Tecnologia) and CMAT (Centre of Mathematics of the University of Minho) projects

FCT funding

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3