Preparation and Characterization of Soybean Protein Adhesives Modified with an Environmental-Friendly Tannin-Based Resin

Author:

Li Hanyin1,Wang Yujie1,Xie Wenwen1,Tang Yang1,Yang Fan1,Gong Chenrui1,Wang Chao12,Li Xiaona3ORCID,Li Cheng1

Affiliation:

1. College of Forestry, Henan Agricultural University, Zhengzhou 450002, China

2. College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China

3. College of Material Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China

Abstract

Soybean protein-based adhesives are limited in their application due to their poor wet bonding strength and poor water resistance. Herein, we prepared a novel, environmentally friendly soybean protein-based adhesive by adding tannin-based resin (TR) to improve the performance of water resistance and wet bonding strength. The active sites of TR reacted with the soybean protein and its functional groups and formed strong cross-linked network structures, which improved the cross-link density of the adhesives and then improved the water resistance. The residual rate increased to 81.06% when 20 wt%TR was added, and the water resistance bonding strength reached 1.07 MPa, which fully met the Chinese national requirements for plywood (Class II, ≥0.7 MPa). SEM observations were performed on the fracture surfaces of all modified SPI adhesives after curing. The modified adhesive has a denser and smooth cross-section. Based on the TG and DTG plots, the thermal stability performance of the TR-modified SPI adhesive was improved when TR was added. The total weight loss of the adhesive decreased from 65.13% to 58.87%. This study provides a method for preparing low-cost and high-performance, environmentally friendly adhesives.

Funder

the Special Fund for Young Talents in Henan Agricultural University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3