A Modified Constitutive Model for Isotropic Hyperelastic Polymeric Materials and Its Parameter Identification

Author:

Wang Wei1ORCID,Liu Yang1,Xie Zongwu1

Affiliation:

1. State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150001, China

Abstract

Given the importance of hyperelastic constitutive models in the design of engineering components, researchers have been developing the improved and new constitutive models in search of a more accurate and even universal performance. Here, a modified hyperelastic constitutive model based on the Yeoh model is proposed to improve its prediction performance for multiaxial deformation of hyperelastic polymeric materials while retaining the advantages of the original Yeoh model. The modified constitutive model has one more correction term than the original model. The specific form of the correction term is a composite function based on a power function represented by the principal stretches, which is derived from the corresponding residual strain energy when the Yeoh model predicts the equibiaxial mode of deformation. In addition, a parameter identification method based on the cyclic genetic-pattern search algorithm is introduced to accurately obtain the parameters of the constitutive model. By applying the modified model to the experimental datasets of various rubber or rubber-like materials (including natural unfilled or filled rubber, silicone rubber, extremely soft hydrogel and human brain cortex tissue), it is confirmed that the modified model not only possesses a significantly improved ability to predict multiaxial deformation, but also has a wider range of material applicability. Meanwhile, the advantages of the modified model over most existing models in the literatures are also demonstrated. For example, when characterizing human brain tissue, which is difficult for most existing models in the literature, the modified model has comparable predictive accuracy with the third-order Ogden model, while maintaining convexity in the corresponding deformation domain. Moreover, the effective prediction ability of the modified model for untested equi-biaxial deformation of different materials has also been confirmed using only the data of uniaxial tension and pure shear from various datasets. The effective prediction for the untested equibiaxial deformation makes it more suitable for the practice situation where the equibiaxial deformation of certain polymeric materials is unavailable. Finally, compared with other parameter identification methods, the introduced parameter identification method significantly improves the predicted accuracy of the constitutive models; meanwhile, the uniform convergence of introduced parameter identification method is also better.

Funder

Major Research Plan of National Natural Science Foundation of China

Self-Planned Task of State Key Laboratory of Robotics and System

China Postdoctoral Science

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3