A Submicron-Scale Plugging Agent for Oil-Based Drilling Fluid Synthesized Using the Inverse Emulsion Polymerization Method

Author:

Zhang Zhiquan1,Dai Baimei1,Xu Peng1

Affiliation:

1. School of Petroleum Engineering, Yangtze University, Wuhan 430100, China

Abstract

Due to the increasing difficulty of drilling in the later stages of oil and gas field development, the development of micro-pores and micro-fractures is becoming common. Conventional plugging agents have relatively large particle sizes. So, choosing the appropriate plugging agent can prevent leakages. Using the inverse emulsion polymerization method, acrylamide, 2-acrylamide-2-methylpropane sulfonic acid and acrylic acid were selected to be the main reaction monomers, N,N′-methylenebisacrylamide was used as a crosslinking agent, sorbitan monostearate and polyoxyethylene sorbitan anhydride monostearate were used as emulsifiers, and 2,2′-azobis(2-methylpropionamidine) dihydrochloride was used as the initiator to synthesize a nano-scale plugging agent for oil-based drilling fluid. The plugging agent was characterized using infrared spectroscopy, scanning electron microscopy, and thermogravimetry analysis. The results showed that the plugging agent is spherical and uniform in size, with particles being in the submicron range. Additionally, it exhibited strong temperature resistance. Finally, the performance of the plugging agent was evaluated via experiments conducted under normal temperature and pressure, high-temperature and high-pressure, and core-plugging conditions. After adding the plugging agent to the oil-based drilling fluid, the basic rheological properties of the oil-based drilling fluid were not significantly affected. Furthermore, the filtration loss was significantly reduced under normal temperature and pressure, as well as under high-temperature and high-pressure conditions, after aging. When the plugging agent with 3% concentration was added, the reduction rate of pore core permeability reached 96.04%. Therefore, the plugging agent for the oil-based drilling fluid can effectively improve the wellbore stability and has a promising potential for field applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference33 articles.

1. Drilling fluid technology developing tendency predicted;Cui;Drill. Fluid Complet. Fluid,2005

2. Development and Reflection of Oil—Based Drilling Fluid Technology for Shale Gas of Sinopec;Lin;Pet. Drill. Tech.,2014

3. Difficulty and Applicable Principle of the Drilling Fluid Technology of Horizontal Wells for Shale Gas;Wang;Sino-Glob. Energy,2012

4. Research status and development directions of intelligent drilling fluid technologies;Jiang;Pet. Explor. Dev.,2022

5. Research and Application of Evaluation Methods for Functional Characteristics of Oil-Based Drilling Fluid in Shale Gas Wells;Gao;Geofluids,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3