Anti-Ballistic Performance of PPTA/UHMWPE Laminates

Author:

Zhu Long1ORCID,Gao Weixiao1,Dikin Dmitriy A.1ORCID,Percec Simona2,Ren Fei1ORCID

Affiliation:

1. Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA

2. Temple Materials Institute, Temple University, Philadelphia, PA 19122, USA

Abstract

Poly(p-phenylene terephthalamide) (PPTA) and ultra-high-molecular-weight polyethylene (UHMWPE) are high-performance polymer materials largely used for body armor applications. Although composite structures from a combination of PPTA and UHMWPE have been created and described in the literature, the manufacture of layered composites from PPTA fabrics and UHMWPE films with UHMWPE film as an adhesive layer has not been reported. Such a new design can provide the obvious advantage of simple manufacturing technology. In this study, for the first time, we prepared PPTA fabrics/UHMWPE films laminate panels using plasma treatment and hot-pressing and examined their ballistic performance. Ballistic testing results indicated that samples with moderate interlayer adhesion between PPTA and UHMWPE layers exhibited enhanced performance. A further increase in interlayer adhesion showed a reverse effect. This finding implies that optimization of interface adhesion is essential to achieve maximum impact energy absorption through the delamination process. In addition, it was found that the stacking sequence of the PPTA and UHMWPE layers affected ballistic performance. Samples with PPTA as the outermost layer performed better than those with UHMWPE as the outermost layer. Furthermore, microscopy of the tested laminate samples showed that PPTA fibers exhibited shear cutting failure on the entrance side and tensile failure on the exit side of the panel. UHMWPE films exhibited brittle failure and thermal damage at high compression strain rate on the entrance side and tensile fracture on the exit side. For the first time, findings from this study reported in-field bullet testing results of PPTA/UHMWPE composite panels, which can provide important insights for designing, fabricating, and failure analysis of such composite structures for body armors.

Funder

U.S. Army Research Laboratory

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3