Surface-Enhanced Raman Scattering (SERS) Substrates Based on Ag-Nanoparticles and Ag-Nanoparticles/Poly (methyl methacrylate) Composites

Author:

Matamoros-Ambrocio Mayra1ORCID,Sánchez-Mora Enrique2ORCID,Gómez-Barojas Estela1

Affiliation:

1. Centro de Investigaciones en Dispositivos Semiconductores (CIDS-ICUAP), Benemérita Universidad Autónoma de Puebla, P.O. Box 196, Puebla 72570, Mexico

2. Institute of Physics, Benemérita Universidad Autónoma de Puebla, Eco Campus Valsequillo, Independencia O 2 sur No. 50, San Pedro Zacachimalpa, P.O. Box J-48, Puebla 72960, Mexico

Abstract

SERS substrates formed by spherical silver nanoparticles (Ag-NPs) with a 15 nm average diameter adsorbed on Si substrate at three different concentrations and Ag/PMMA composites formed by an opal of PMMA microspheres of 298 nm average diameter were synthesized. The Ag-NPs were varied at three different concentrations. We have observed from SEM micrographs, in the Ag/PMMA composites, the periodicity of the PMMA opals is slightly altered as the Ag-NP concentration is increased; as a consequence of this effect, the PBGs maxima shift toward longer wavelengths, decrease in intensity, and broaden as the Ag-NP concentration is increased in the composites. The performance of single Ag-NP and Ag/PMMA composites as SERS substrates was determined using methylene blue (MB) as a probe molecule with concentrations in the range of 0.5 µM to 2.5 µM. We found that in both single Ag-NP and Ag/PMMA composites as SERS substrates, the enhancement factor (EF) increases as the Ag-NP concentration is increased. We highlight that the SERS substrate with the highest concentration of Ag-NPs has the highest EF due to the formation of metallic clusters on the surface, which generates more “hot spots”. The comparison of the EFs of the single Ag-NP with those of Ag/PMMA composite SERS substrates shows that the EFs of the former are nearly 10-fold higher than those of Ag/PMMA composites. This result is obtained probably due to the porosity of the PMMA microspheres that decreases the local electric field strength. Furthermore, PMMA exerts a shielding effect that affects the optical efficiency of Ag-NPs. Moreover, the metal–dielectric surface interaction contributes to the decrease in the EF. Other aspect to consider in our results is in relation to the difference in the EF of the Ag/PMMA composite and Ag-NP SERS substrates and is due to the existing mismatch between the frequency range of the PMMA opal stop band and the LSPR frequency range of the Ag metal nanoparticles adsorbed on the PMMA opal host matrix.

Funder

Vicerrectoria de Investigacion y Estudios de Posgrado-Benemérita Universidad Autónoma de Puebla

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3