Eco-Friendly Blends of Recycled PET Copolymers with PLLA and Their Composites with Chopped Flax Fibres

Author:

Kuété Martial Aimé123ORCID,Van Velthem Pascal1ORCID,Ballout Wael1,Klavzer Nathan2,Nysten Bernard1ORCID,Ndikontar Maurice Kor3,Pardoen Thomas2,Bailly Christian1

Affiliation:

1. Institute of Condensed Matter and Nanosciences—Bio & Soft Matter (IMCN/BSMA), UCLouvain, 1348 Louvain-la-Neuve, Belgium

2. Institute of Mechanics, Materials and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium

3. Macromolecular Chemistry Unit, Applied Chemistry Laboratory, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon

Abstract

The structure and properties of blends of a novel polyethylene terephthalate copolymer (COPET) obtained by chemical recycling of commercial PET with high-molar-mass poly-L-lactide (PLLA) are investigated and compared to corresponding composites with chopped flax fibres. The focus is on the morphology at nano- and micro-scales, on the thermal characteristics and on the mechanical behaviour. The blends are immiscible, as evidenced by virtually unchanged glass transition temperatures of the blend components compared to the neat polymers (49 °C for COPET and 63 °C for PLLA by DSC). At low PLLA content, the blends display a sea–island morphology with sub-micron to micron droplet sizes. As the composition approaches 50/50, the morphology transitions to a coarser co-continuous elongated structure. The blends and composites show strongly improved stiffness compared to COPET above its glass transition temperature, e.g., from melt behaviour at 60 °C for COPET alone to almost 600 MPa for the 50/50 blend and 500 MPa for the 20% flax composite of the 80/20 COPET/PLLA blend. The flax fibres increase the crystallisation rate of PLLA in blends with dispersed PLLA morphology. The evidence of cavitation on the fracture surfaces of blends shows that despite the immiscibility of the components, the interfacial adhesion between the phases is excellent. This is attributed to the presence of aliphatic ester spacers in COPET. The tensile strength of the 80/20 blend is around 50 MPa with a Young’s modulus of 2250 MPa. The corresponding 20% flax composite has similar tensile strength but a high Young’s modulus equal to 6400 MPa, which results from the individual dispersion and strong adhesion of the flax fibres and leads close to the maximum possible reinforcement of the composite, as demonstrated by tensile tests and nano-indentation. The Ashby approach to eco-selection relying on the embodied energy (EE) further clarifies the eco-friendliness of the blends and their composites, which are even better positioned than PLLA in a stiffness versus EE chart.

Funder

Académie de recherche et d’enseignement supérieur

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3