Application of Biological Glue–Clay Composite Substrate in Slope Ecological Restoration

Author:

Zhu Xufen1,Zheng Jiaqiang1,Gao Yuliang2,Xue Jian2,Hu Guochang3,Che Wenyue1,Song Zezhuo14ORCID,Liu Jin1ORCID,Huang Tingwei1,Wu Peng1

Affiliation:

1. School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China

2. Jiangsu Institute of Geology and Minerals Investigation, Jiangsu Geological Bureau, Nanjing 210000, China

3. Jiangsu Shanshui Ecological Environment Construction Engineering Co., Ltd., Nanjing 210018, China

4. School of Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC 3001, Australia

Abstract

Given the issues of soil cracking, poor water retention during drought, and erosion damage caused by rainfall, we conducted an in-depth study on the water retention properties, cracking resistance, and scouring resistance of biogel-amended clay using evaporation cracking and scouring tests. The hydrophysical properties and cohesive aggregation mechanism of biogel-amended clay were explored, and the results showed that the incorporation of biogel improved the water retention, cracking resistance, and scour resistance of the clay samples. With an increase in the biogel content, the biogel mucous membrane inside the samples improved the cohesion between soil particles, reduced the generation and development of cracks, and improved the cracking resistance. There was no significant cracking of the samples after the biogel content reached 0.3%, which changed the migration of water in the sample, prevented water evaporation, and improved the water retention of the clay samples. Biofilm can change the migration of water in the sample, prevent some evaporation, and reduce the evaporation rate. To a certain extent, it can enhance the water retention capacity of the sample. Enhanced biofilm content significantly reduced scouring in the process of rainfall and runoff erosion of the sample, and biofilm content of 0.2% significantly reduced the surface of the specimen damaged by erosion. The hydrophysical properties of the composite-adhesive-amended clay samples were significantly improved compared with those of the single-bioadhesive-amended clay samples.

Funder

Scientific Research Project of Geological and Mineral. Exploration Bureau of Jiangsu Province

National Natural Science Foundation of China

Jiangsu Funding Program for Excellent Postdoctoral Talent

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3