Experimental Study and Discrete Analysis of Compressive Properties of Glass Fiber-Reinforced Polymer (GFRP) Bars

Author:

Zhou Zhilin1,Meng Long2,Zeng Feng3,Guan Shuai4,Sun Jiahui4ORCID,Tafsirojjaman T.5ORCID

Affiliation:

1. Zhuhai Xianghai Bridge Co., Ltd., Pingdong Sixth Road 8, Zhuhai 519000, China

2. Guangxi Xingang Communications Investment Group Co, Ltd., Chenguang Road 100, Qinzhou 535008, China

3. Guangzhou Highway Engineering Group Co., Ltd., Shuimengerheng Road 2, Guangzhou 510170, China

4. The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Pingleyuan Road 100, Beijing 100124, China

5. School of Architecture and Civil Engineering, The University of Adelaide, Adelaide 5005, Australia

Abstract

Glass fiber-reinforced polymer (GFRP) has superior characteristics over traditional steel, such as lightweight, high strength, corrosion resistance and high durability. GFRP bars can be a useful alternative to steel bars in structures, specifically those in highly corrosive environments, as well as structures subjected to high compressive pressure such as bridge foundations. Digital image correlation (DIC) technology is used to analyze the strain evolution of GFRP bars under compression. It can be seen from using DIC technology that the surface strain of GFRP reinforcement is uniformly distributed and increases approximately linearly, and brittle splitting failure of GFRP bars happens due to locally occurring high strain at the failure stage. Moreover, there are limited studies on the use of distribution functions to describe the compressive strength and elastic modulus of GFRP. In this paper, Weibull distribution and gamma distribution are used to fit the compressive strength and compressive elastic modulus of GFRP bars. The average compressive strength is 667.05 MPa and follows Weibull distribution. Moreover, the average compressive elastic modulus is 47.51 GPa and follows gamma distribution. In order to verify that GFRP bars still have certain strength under compressive conditions, this paper provides a parameter reference for their large-scale application.

Funder

CSCEC Technology R&D Program

Shanghai Science and Technology Program

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3